

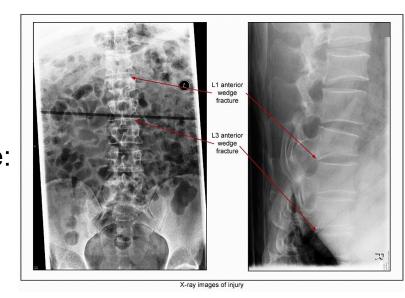
Naval Design Partnering

DEVELOPMENT OF A SUSPENSION SEAT TEST PROTOCOL

Date Presenter Position May 2014 Thomas Coe NDP High Speed Craft Development Manager

Contents

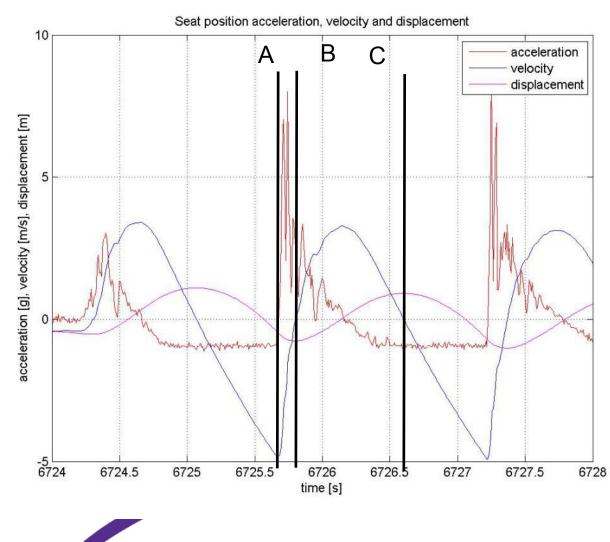
• Whole Body Vibration Measurement and Exposure


de&s

- Legacy Craft Issues
- NDP Research Solutions

Background

- Whole Body Vibration and shock recognised as an issue on HSC for a number of years, believed to cause:
 - Acute injuries,
 - Long term health degradation
 - Performance loss/fatigue



- Legislation has placed requirements on employers and employees to act
- EU and UK Legislation places Limits on the Exposure

Measurement and Exposure

• Planing craft time histories consist of repeated shocks

Free fall ended at max downward velocity (A)

Craft still moving down: max loading phase

Displacement minima at zero velocity (after slam) (B)

Displacement maxima at zero velocity (during free fall) (C)

HSBO 2014 Gothenburg

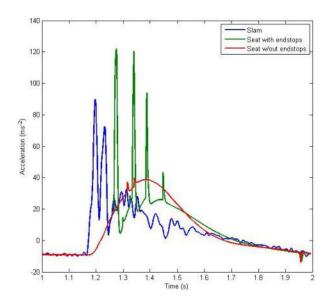
٢

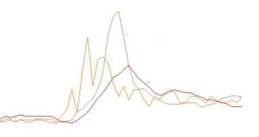
Ministry of Defence

Legacy Craft Issues 1

- Diversity of the fleet
- Diversity of occupants
- Available weight and space

Seat selection issues

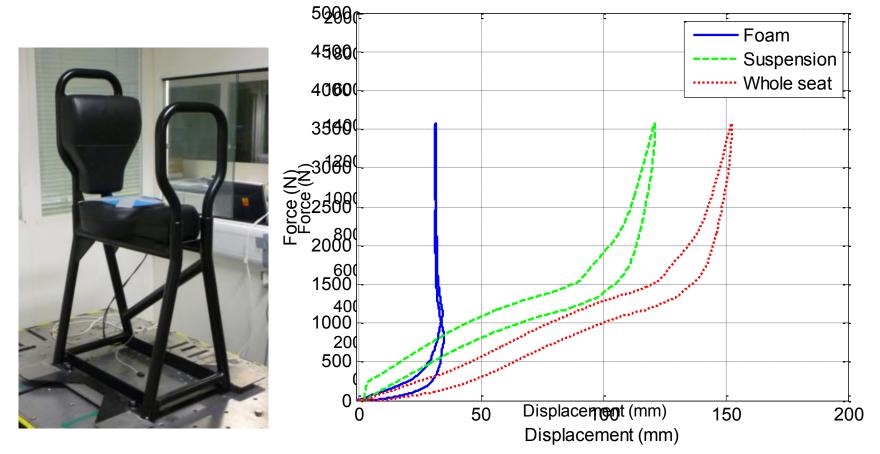

- Lack of a test standard and hence:
 - No way of demonstrating seats are fit for purpose (safe)
 - End Stop Impacts


۲

Ministry of Defence Unable to compare like with like

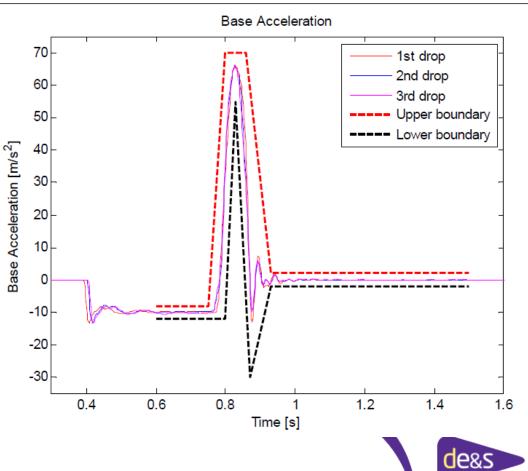
HSBO 2014 Gothenburg

de&


Test Protocol Development

- University of Southampton Institute of Sound and Vibration Research engaged to develop test protocol and inform NDP on how to specify/assess shock mitigating seats
- Threefold process
 - 1. Characterisation of example seats on an indenter rig to give stiffness curves (for modelling)
 - 2. Testing of example seats (manned and unmanned) on 1m stroke shaker
 - 3. Shock testing of seats

Example of in service seat


Load-deflection curves of the Pacific 24 In service seat

ISVR Drop test protocol

Ministry HSBO 2014 Gothenburg

Initial Seat testing results

- ISVR delivery of seat test results
- Hypothesis: All seats will give similar SEAT Values
 - Mature market
 - Minimal number of parameter (k_{seat}, c_{seat}, m_{seat}, length of travel)

de&

– Reasonably straightforward problem?

Initial results

Manufacturer	Model		SEAT Value (seat base to seat surface)
_	Pac 24 seat	-	1.94
А	1	0.75	1.08
В	2	1.75	2.2
С	3	0.72	0.94
D	4	0.63	0.79
E	5	1.3	1.27
F	6	1.19	1.37
G	7	1.43	1.76
Н	8	0.71	1.04
С	9	0.73	1.19
I	10	1.03	1.16
	10-a	0.91	1.12
D	11	0.66	0.86

HSBO 2014 Gothenburg

Ministry of Defence

۲

Outcomes

Cushions have a big effect!

Manufacturer			SEAT Value (VDV ratio) on suspension frame	SEAT Value (seat base to seat surface)
		20.95	X	1.63*X

٢

Ministry of Defence Would expect this to be 1 (ie a rigid seat) This shows 94% worse than nothing

Results indicate that no cushion would be the best solution- from a WBV perspective

Example of an HF issue Users unlikely to accept this

HSBO 2014 Gothenburg

Outcomes

Shows significant differences between seats (so a useful test) Shows benefits of seats compared with baseline.

Best seats achieve SEAT values of 0.63 - 0.69 (on the frame) or 0.79 on the cushion

 $T \downarrow 2 = T \downarrow 1 \ [SEAT \downarrow 1 \ /SEAT \downarrow 2 \]\uparrow 4$

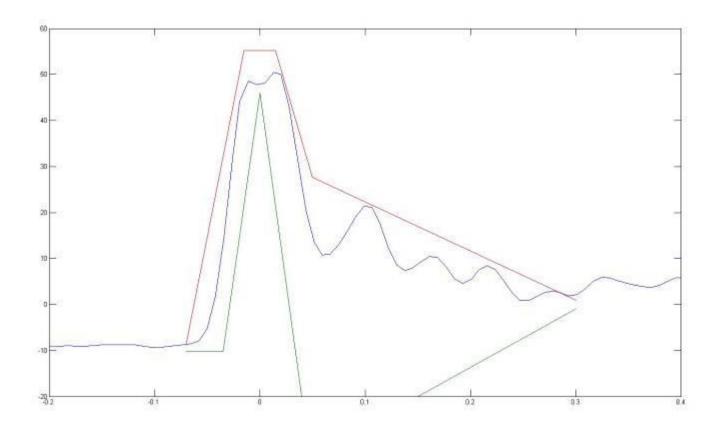
This means time to VDV limit values increases significantly ie [1/0.66]/4 = 5.3 or comparing seats [1.94/0.79]/4 = 36.4

NDP Development

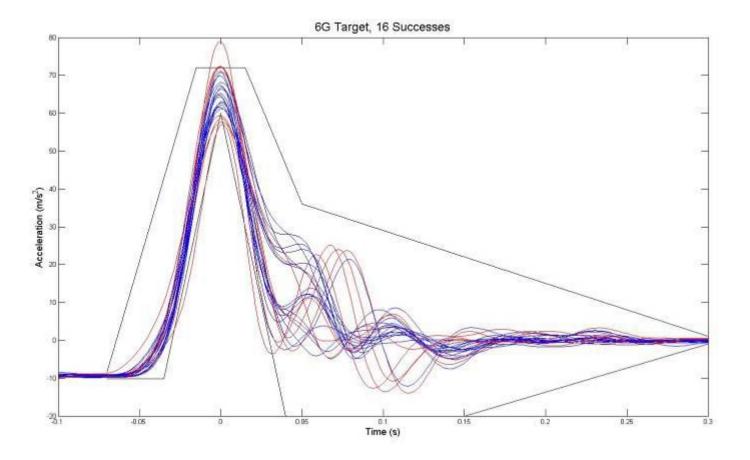
- NDP undertook ~300 drops using a number of seats to test:
 - Drop Height (the main test variable other variables were usually tested over a range of drop heights, from 0.05m to 1.05m)
 - Wedge Apex angle
 - Occupant mass (generally sandbags, varied from 0kg to ~100kg)
 - Load Position on the Seat (varying the position of the load on the seat fore and aft)
 - Dropping Table Mass (varied from 64kg to 201kg)
 - Sand Angle (horizontal, tilted forwards, tilted aft, tilted sideways)
 - Hang Angle (horizontal, tilted forwards, tilted aft, tilted sideways)
 - Bomb Release Type (2 bomb releases were tested)

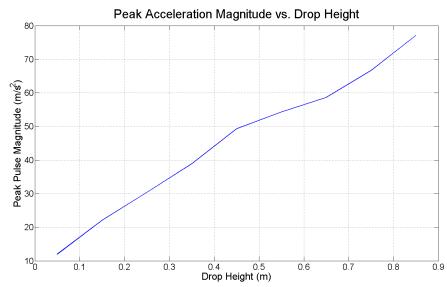
Protocol shape

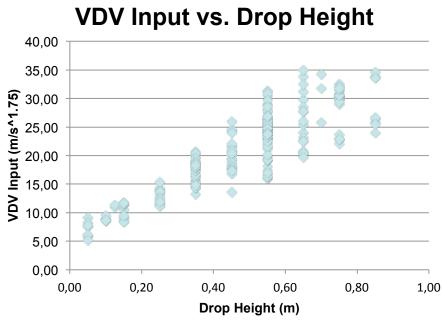
- Based on shock input envelopes
 - If input fits within envelope test is valid
 - Envelope defined based on peak value shocked
- Methodology is not prescribed, drop test in informative annex



de&s


Output- Real world shocks

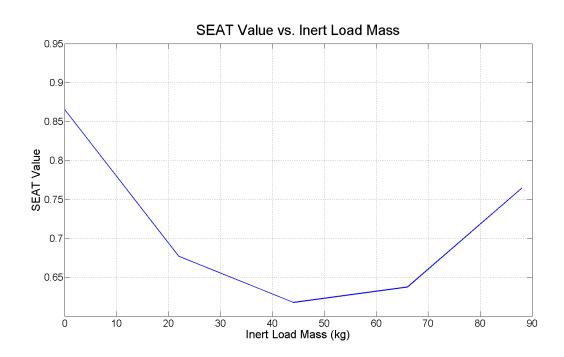

Output



de&s

Ministry of Defence HSBO 2014 Gothenburg

Results- Drop Height

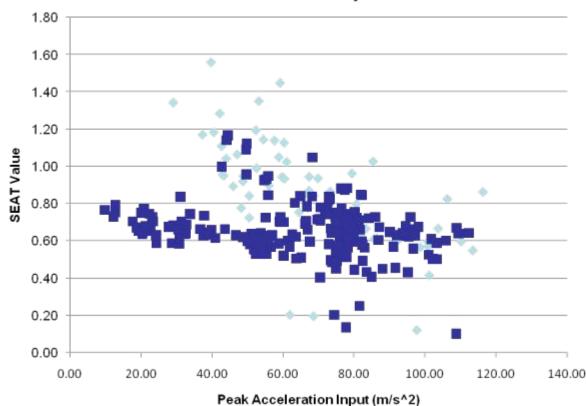

۲

Ministry of Defence de&s

HSBO 2014 Gothenburg

Results- Occupant mass

- Confirms need to test a range of masses
- No appreciable effect of mass location


de&

Results- Seat Performance

Peak Acceleration Input vs. SEAT Value

de&s

HSBO 2014 Gothenburg

Example (expanding the envelope)

HSBO 2014 Gothenburg

Summary

- Protocol developed using indenter rig, shaker table testing, drop testing and modelling
- Large number of additional drops carried out to validate protocol
- Shocks generated representative of real world data

THANK YOU, QUESTIONS?

de&

