

Reference

Colwell, J.L., L. Gannon, T. Gunston, *et al*, "Shock Mitigation Seat Test and Evaluation", Human Factors in Ship Design and Operation Conference, Royal Institution of Naval Architects, London, 2011

J.L. Colwell, DRDC - Atlantic, Canada
L. Gannon, DRDC - Atlantic, Canada
T. Gunston, VJ Technology, UK
R.G. Langlois, Carleton University, Canada
M.R. Riley, The Columbia Group, USA.
T.W. Coats, NSWC CD CCD, USA.

Small High Speed Craft (HSC)

Small High Speed Craft (HSC)

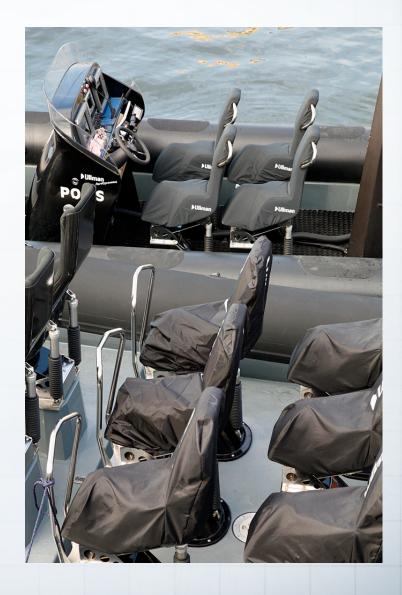
Extreme motions High-G slam impacts

Image Copyright Powerboat P1

Image Copyright zodiacc27.com

HSC Shock Mitigation

Protect people from high-g slam impacts


HSC Shock Mitigation

Seats

Decks

Shock Mitigation Seats

• Vertical protection, generally adequate

Shock Mitigation Seats

- No lateral protection
- Require novel solutions

Image Copyright Powerboat P1

No mitigation for lateral acceleration

(person supported at hips and shoulders)

Goals

• reduce the risk of acute and chronic injuries to CF personnel

- reduce the risk of acute and chronic injuries to CF personnel
- improve state of the art for shock mitigation seats

- reduce the risk of acute and chronic injuries to CF personnel
- improve state of the art for shock mitigation seats
- develop concise requirements for CF acquisition projects
 - performance specifications
 - evaluation criteria

- reduce the risk of acute and chronic injuries to CF personnel
- improve state of the art for shock mitigation seats
- develop concise requirements for CF acquisition projects
 - performance specifications
 - evaluation criteria
- establish new methodologies for
 - modeling & simulation
 - test & evaluation

- reduce the risk of acute and chronic injuries to CF personnel
- improve state of the art for shock mitigation seats
- develop concise requirements for CF acquisition projects
 - performance specifications
 - evaluation criteria
- establish new methodologies for
 - modeling & simulation
 - test & evaluation
- not product comparisons for pre-selection

- Phase 1 benchmark contemporary technologies
- Phase 2 develop test capabilities and test protocols
- Phase 3 develop mathematical models and simulation codes
- Phase 4 validate Phase 3 models using Phase 2 methods
- Phase 5 document achievements, make recommendations

Phase 1 - benchmark contemporary technologies
Phase 2 - develop test capabilities and test protocols
Phase 3 - develop mathematical models and simulation codes
Phase 4 - validate Phase 3 models using Phase 2 methods
Phase 5 - document achievements, make recommendations

Vessel Class

Class	Description
1	Low speed commercial / leisure
2	High speed commercial / leisure
3	Search and Rescue
4	Military

Vessel Class

Class	Description	Speed
1	Low speed commercial / leisure	< 20 kt
2	High speed commercial / leisure	≥ 20 kt
3	Search and Rescue	≥ 30 kt
4	Military	≥ 40 kt

Racing boats not classified

Exposure Severity

Severity	Description
1	Mild
2	Moderate
3	Severe
4	Extreme

Class	Description
1	Low speed commercial / leisure
2	High speed commercial / leisure
3	Search and Rescue
4	Military

Severity	Description
1	Mild
2	Moderate
3	Severe
4	Extreme

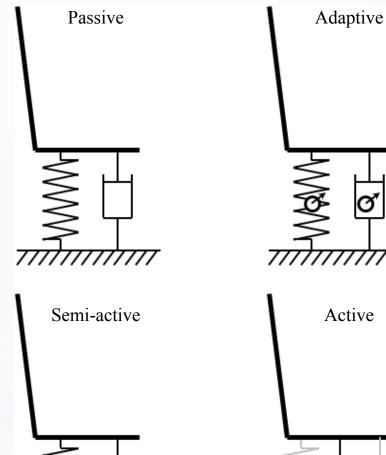
Taken together, vessel class and expected exposure severity provide the basis for risk assessment and for specification of shock mitigation seat requirements

Class	Description	Severity	Description
1	Low speed commercial / leisure	1	Mild
2	High speed commercial / leisure	2	Moderate
3	Search and Rescue	3	Severe
4	Military	4	Extreme

Problem: encountering exposure severity greater than expected for class might result in injury, as shock mitigation equipment is not up to the task (risk mitigation)

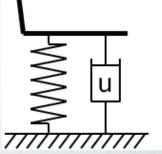
Class	Description		Severity	Description
1	Low speed commercial / leisure	*	1	Mild
2	High speed commercial / leisure		2	Moderate
3	Search and Rescue		3	Severe
4	Military		4	Extreme

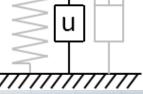
Problem: shock mitigation equipment selected for extreme environment might not work so well in much less demanding environment (specify adaptability/control)


Class	Description	Severity	Description
1	Low speed commercial / leisure	1	Mild
2	High speed commercial / leisure	2	Moderate
3	Search and Rescue	3	Severe
4	Military	4	Extreme

European Physical Agents (Vibration) Directive 2002 may be appropriate for Classes 1 and 2, associated with "mild" and "moderate" exposure severity (what about "severe" & "extreme"?)

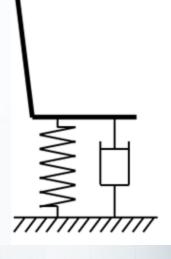
Seat Suspension Configurations


- 1. Passive
- 2. Adaptive
- 3. Semi-active
- 4. Active

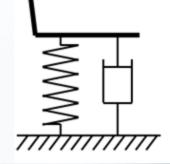


adjustable

Ø

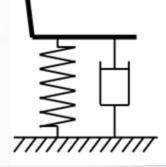

continuous control signal

Passive Suspension


- Pre-tuned for expected environment
- Simple and robust
 - no electronics, no external power
- Challenges:

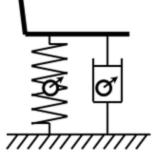
Passive

Passive Suspension


- Pre-tuned for expected environment
- Simple and robust
 - no electronics, no external power
- Challenges:
 - 'heavy' occupant or loads > 'bottom-out'

Passive

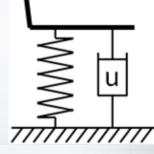
Passive Suspension


- Pre-tuned for expected environment
- Simple and robust
 - no electronics, no external power
- Challenges:
 - 'heavy' occupant or loads > 'bottom-out'
 - 'light' occupant or loads > 'doing-doing'

Passive

Adaptive Suspension

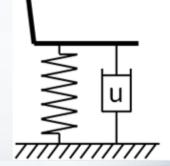
- Same or similar components as 'passive'
- Easy to adjust/tune suspension characteristics
 - manual
 - automatic
- Adjustments not continuous, not 'controlled' in real time
- Challenges similar to 'passive', but less restrictive



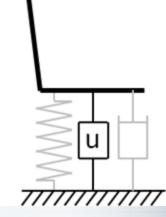
Adaptive

Semi-active Suspension

- Dynamic control
 - control suspension characteristics in real time
 - control by removing energy from system (only)
 - includes motion sensor, processor & control actuator
 - possible control strategies:
 - time-averaged characteristics
 - real time, within motion cycle (e.g. rise time)
 - potential for use with real time 'look ahead' sensors

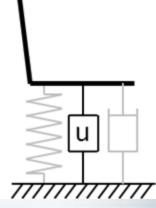

Semi-active

Semi-active


Semi-active Suspension

- Challenges:
 - modest external power requirement
 - higher complexity
 - performance in failure modes

Active Suspension


- Dynamic control
 - control suspension characteristics in real time
 - control by adding energy to system
 - can also remove energy from system
 - includes motion sensor, processor & control actuator
 - possible control strategies:
 - time-averaged characteristics
 - real time, within motion cycle (i.e. rise time)
 - potential for use with real time 'look ahead' sensors
 - decouples transmitted force from compression of suspension

Active

Active Suspension

- Challenges:
 - higher external power requirement
 - higher complexity
 - performance in failure modes

Active

- Phase 1 benchmark contemporary technologiesPhase 2 develop test capabilities and test protocolsPhase 3 develop mathematical models and simulation codes
- Phase 4 validate Phase 3 models using Phase 2 methods
- Phase 5 document achievements, make recommendations

Back + Front

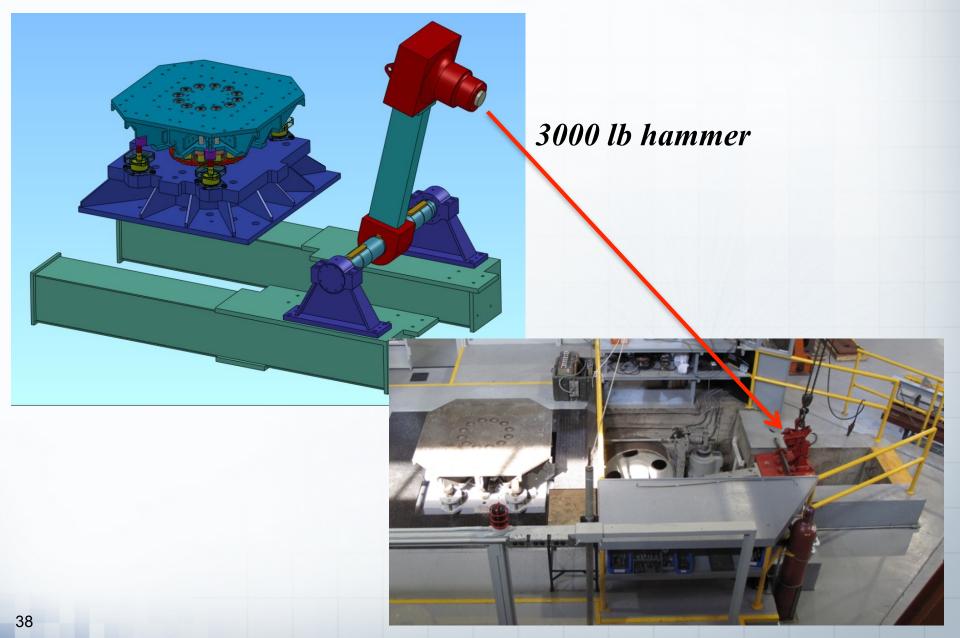
mounted

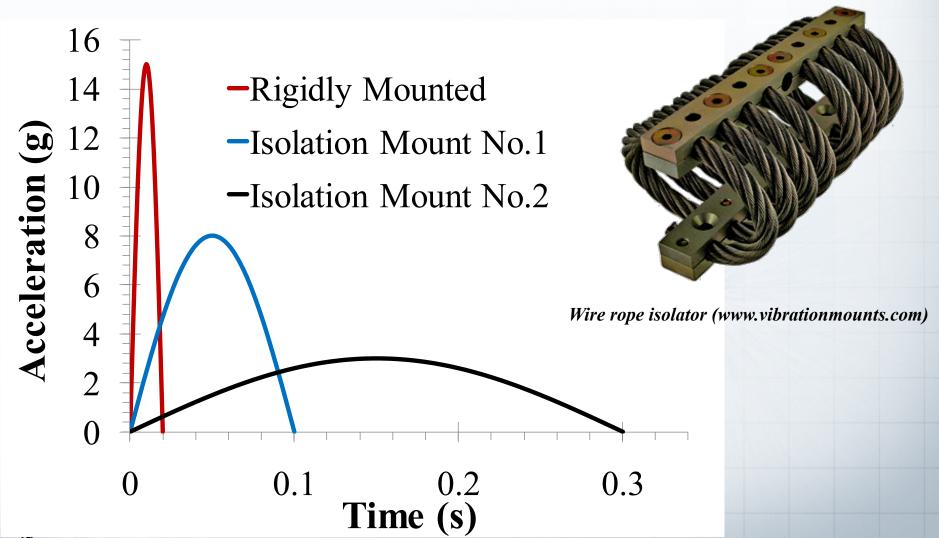
Shock Mitigation Seat Acquisition

Driver Seat

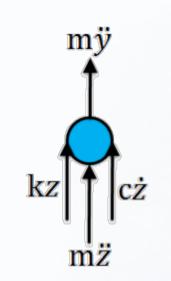
Shock Mitigation Seat Acquisition

Shock Mitigation Seat Acquisition

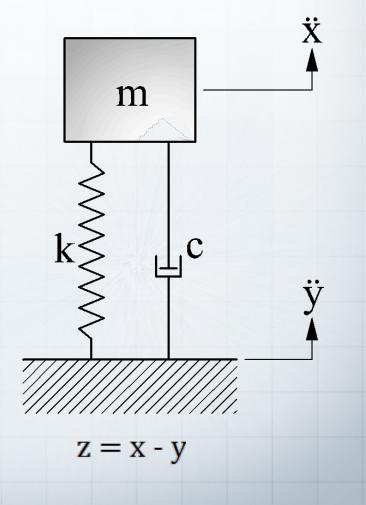

• Ullman Dynamics (SE)



- Testing by Naval Engineering Test Establishment (NETE)
- Single impact test
- 22 seats to test in total
- 11 seat types 2 of each for repeatability
- 3 impacts for each of 3 g levels = 9 impacts per seat
- Seats hard mounted + 2 resiliently mounted set ups:
 - 9 impacts per seat x 3 mounting configurations = 27 impacts per seat



DEFENCE



Numerical Modelling

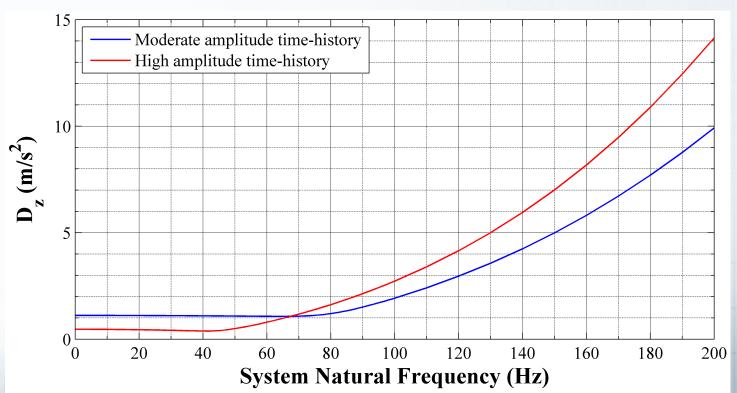

• MATLAB & Simulink

 $m\ddot{z} + c\dot{z} + kz = -m\ddot{y}$

Numerical Modelling

, DÉFENSE

DEFENCE



Numerical Modelling

• Vibration dose: L

$$D_z = \left[\sum_i A_{iz}^6\right]^{1/6}$$

- Accelerations are frequency-weighted
- Neural network limited to accelerations < 4 g

Way Ahead

- Test individual suspension components
- Validate numerical models
- Method for testing semi-active and active seats

DEFENCE

DÉFENSE

6