

HighSpeedBoat 2015 OperationsForum Göteborg

Propulsion Trade Study of a Hybrid USV

Jeffrey Bowles

Technical Director
Donald L. Blount & Associates, Inc.
870 Greenbrier Circle Suite 600
Chesapeake, VA 23320
www.dlba-inc.com

Introduction

- Investigated Electric, and Diesel Electric Propulsion Options Et al.
 - Compared Relative Endurance at WOT
 - ▶ 95% at 5kts and 5% at WOT
 - Only Evaluated Propulsion System Structure in Series

Introduction

Outline

- Trade Study Assumptions
- Types of Hybrid Systems Evaluated
- Results of The Study
- Conclusions
- NOTE: Maintenance cost and capital cost are beyond the scope of this study.

Trade Study Assumptions

- 11 m Hard Chine Monohull
 - Aluminum Construction
 - Twin Fixed Pitch Propellers
 - $\Delta = 8,250 \text{ kg}$
 - V = 30 knots max
- Operational Profile
 - 24 hr endurance
 - 5% of operation at wide open throttle
 - 95% of operation at 5 knots
 - Resistance at 5 knots was assumed to be the same for all of the variants evaluated
- Fleet Characteristics
 - 5 boats
 - 1 boat down for maintenance per week (oil change or major overhaul)
 - 10 year lifespan
 - 7000 annual operating hours per boat

Types of Propulsion Systems Evaluated

		Propulsion System Components					Modes of operation		
	TYPE	Diesel	PTO	Diesel	Batteries	Electric	Main Prop.	Diesel	Electric/
			Generator	Generator		Motor	Engine	Electric	Silent
1	Diesel	√					✓		
2	CNG	✓					✓		
3	Diesel Electric	✓		✓		✓	✓	✓	
4	Diesel Electric Hybrid (w/dedicated generator)	✓		✓	✓	√	✓	√	✓
5	Diesel Electric Hybrid (w/PTO generator)	✓	✓		✓	✓	✓	✓	✓

Types of Propulsion Systems Evaluated

- 1. DIESEL & 2. CNG
- 3. DIESEL ELECTRIC
- 4. DIESEL ELECTRIC HYBRID
- 5. DIESEL ELECTRIC HYBRID

(w/dedicated generator) (w/PTO generator)

State of Charge Profile EINDELTRANCEIA RECIENDED IN INCHES BANGE REPRESTOR SIZE

DONALD L. BLOUNT AND ASSOCIATES, INC.
NAVAL ARCHITECTS/MARINE ENGINEERS

Results of The Study

USV PROPULSION OPTIONS		FLEET REULTS FOR 10 YEARS OF OPERATION							
ľ	JSV PROPULSION OPTIONS	Prime Mover x1000 hrs	No. of Oil Changes	Generator x1000 hrs	E-Motor x1000 hrs	Cycles x1000	Battery Replacements		
1	Diesel	699	3494			Depends on: • State of			
2	CNG	699	3494			DepthDischSelect	arge		
3	Diesel Electric	35	175	664	664	battery chemistry			
4	Diesel Electric Hybrid (w/dedicated generator)	35	175	417	664	102	51		
5	Diesel Electric Hybrid (w/PTO generator)	397	1986		664	102	51		

Battery Replacement Interval

- Battery life depends on selected chemistry, depth of discharge
- Replacement interval depends on # of cycles per op and # of op/year

Results of The Study

		FLEET REULTS FOR 10 YEARS OF OPERATION						
	JSV PROPULSION OPTIONS	Total Fuel Burn x1000 Liters	co ₂	co ₂	Cost of Fuel	Fuel Savings		
1	Diesel \$0.52/liter	7005	18.61	0%	\$ 3,664,172	0%		
2	CNG \$3.70/mmbtu	60542	23.25	-25%	\$ 1,373,000	63%		
3	Diesel Electric	5628	14.95	20%	\$ 2,943,579	20%		
4	Diesel Electric Hybrid (w/dedicated generator)	6252	16.61	11%	\$ 3,270,309	11%		
5	Diesel Electric Hybrid (w/PTO generator)	6356	16.88	9%	\$ 3,324,439	9%		

Conclusions

- Series diesel electric/hybrid structures are not feasible on small HSC
 - Weight of electric motor and ancillaries to provide +30 kts is prohibitive
- Parallel diesel electric/hybrid structures are feasible on small HSC
- There are feasible operational profiles with less delta than the one analyzed herein i.e. (95%/5%)
 - The designer has to determine the feasibility crossover point
- All diesel electric/hybrid option reduce operating hours on the main diesel engines
- CNG offers reduced annual operating cost with less capital cost than the diesel electric/hybrid systems
- Only the diesel electric/hybrid systems offer reductions in CO2

Conclusions

- State of charge profiles are very important
 - Directly impacts battery life span, battery bank size, generator loading, and generator op hours
- A dedicated generator is a more efficient means than a PTO for this specific application
 - An additional investigation could explore the impact of using only one diesel engine at a time providing propulsion, charging the batteries and enough power to drive the electric motor on the other drive shaft.

QUESTIONS?

THANK YOU!!!