Human body models as design requirements to prevent injury to onboard personnel

Karin Brolin Victor Alvarez Linus Fagerberg

Emanuel Klasén Matteo Perrone

SWEDISH DEFENCE MATERIEL ADMINISTRATION

Background

- Design requirements are defined for damage to equipment, but not to the same extent for human injury (limited to traditional ergonomics).
- Injurious impact loading may occur during high-speed boat operations, for example due to slamming.
- Finite element human body models (HBMs) have been & are used in traffic safety research, product development and consumer testing to prevent impact injury.

AIM: To assess whether HBMs can be used as design requirements to prevent impact injuries to onboard personnel.

Human Body Models – a brief history for automotive applications

Human Body Models – accessible state-of-the-art models

Human body models – Validation

Hierarchical Validation for GHBMC -

Comparing HBM response to tissue testing, ex-vitro testing, postmortem human subjects & volunteer experiments.

© Elemance, Ltd, USA

LIGHTNESS BY DESIGN

Onboard personnel

- Steering
- Navigating
- Performing other tasks
- Resting
- Transportation of injured personnel casevac

Sitting, standing & lying postures.

Methodology

- FE HBM:
 - GHBMC M50 Occupant
 - GHBMC M50 Pedestrian
 - Global Human Body Model Consortium-owned
 - Licensed by Elemance Ltd.
- Environment, FE models of:
 - Generic seat
 - Bucket seat
 - Bunk beds
 - Floor
- Reposition HBM using Ansa (Beta CAE)
- FE solver: LS-Dyna

Slamming – simplified pulse

- Acceleration pulse
 - Peak = 20 g
 - Rise-time = 10 ms

Ullman et al. "Lab testing of suspension seats for high-speed boats", High Speed Vessels, 1-2 June, London, UK, 2020.

Ullman et al., "MultiAgency, prospective, exploratory, non-intervention, cohort Study on Human Impact Exposure oNboard high-speed boats (MASHIEN): protocol". *BMJ open*, *15*(5), e090993. 2025, <u>https://doi.org/10.1136/bmjopen-2024-090993</u>

Riley et al., "A deterministic approach for characterizing wave impact response motions of a high-speed planing hull," tech. rep., NAVAL SURFACE WARFARE CENTER CARDEROCK DIV NORFOLK VA COMBATANT CRAFT DEPT, 2012.

GHBMC – injury prediction based on tissue responses

Category	Description	Color Code
0.	Model detail sufficient, test data available, injury mechanism understood,	
	correlation carried out	
1.	Model detail sufficient, test data available, injury mechanism understood,	
	but validation work is incomplete or inconclusive	
2.	Model detail sufficient, but test data unavailable or insufficient	
3.	Model detail insufficient, test data available, additional modeling should	
	help predict this CII	
4.	Model detail insufficient, test data unavailable; additional modeling effort	
	and test data should help predict this CII	
5.	Injury mechanism needs some more investigation	
6.	Injury mechanism needs extensive additional investigation	

Table 21, CII assessment canability scale for GHBMC models.

"Average" quality of injury prediction with GHBMC-implemented criteria.

Results

Skeletal loading – compact bone

Suspension	Foam	Pos 1	Pos 1	 Pos 1	Pos 1	
C+:ff	Soft			Х		
5111 -	Stiff	Х				
Olausson-Garme	Soft				Х	
(2015)	Stiff		Х			

Skeletal loading – compact bone

Head and brain injury prediction

- Multiple injury criteria
 - HIC linear acceleration
 - BRIC rotational velocity

100%

8%

• Strain based

58 - 80%

1-2%

AIS1+

AIS2+

16%

0%

Standing & supine – different surface/floor configurations

Internal organs

Strains, Major Principal, Max of In Out/All Layers

Organ	Minimum strain energy density below which injury is not seen.	Bunk bed 1	Bunk bed 2	Bunk bed 3	Bunk bed 4
Kidneys	2.2 µJ/mm^3	0.44 µJ/mm^3	0.47 µJ/mm^3	0.36 µJ/mm^3	0.26 µJ/mm^3
Spleene	0.6 µJ/mm^3	0.64 µJ/mm^3	0.71 µJ/mm^3	0.53 µJ/mm^3	0.41 µJ/mm^3
Liver	0.6 µJ/mm^3	0.37 µJ/mm^3	0.44 µJ/mm^3	0.31 µJ/mm^3	0.24 µJ/mm^3

Brain strain

Summary – standing & supine

- Limitations of the performed study
 - Loading:
 - Only one (simplified) shock pulse shape and amplitude.
 - Only vertical direction.
 - Seat FE models
 - Foam material properties taken from literature, rather than testing of actual seat.
 - Generic seats, bunk beds & floor not validated.
 - Lack of active musculature in HBM.

- Conclusion
 - Promising method using HBM for injury prediction & seat assessment.
 - Straight forward method
 - Requires simulation resources and time
 - Predicted the expected differences in severity between different positions and seats.
 - Could study how the energy was absorbed by the human-seat system, down to organ level.

Future Work

- Assess seat design with regards to impact injury prediction.
- Study variations in onboard personnel body mass & anthropometry.
- Vary load direction and multiple impacts.
- Study human kinematics to determine a safe space.
- Casevac: How should injured personnel be safely transported in supine position for different sea states?

Conclusion:

HBMs can be used as design requirements to prevent impact injuries to onboard personnel.

AIS 2+ AIS 3+ AIS 4+ AIS 5+

2.00

1.75

eria								
Suspension	Foam	Pos 1	Pos 1	Pos 1	Pos 1	Pos 4	Pos 4	Post 1
Stiff	Soft	1031	1031	X	1031	X	103 4	1001_1
	Stiff	Х		_				
Olausson-	Soft	-			Х		X	
Garme	Stiff		Х					
Daytona	Soft							Х
HIC 15		5.8	2.3	0.4	0.4	1.4	1.2	1.8
BrIC		0.1274	0.1139	0.1369	0.1319	0.251	0.2449	0.007
AIS1+ injury risk		70%	58%	80%	73%	100%	100%	16%
AIS2+ inju	ry risk	1%	1%	2%	1%	8%	8%	0%
Brain Strain		0.2	0.15	0.11	0.11	0.15	0.14	0.11
mild TBI	risk	0%	0%	0%	0%	0%	0%	0%

- HIC = Head Injury Criteria, threshold 700 for HIC 15
- BrIC = Brain Injury Criteria, risk curves for different injury severity (AIS)
- mTBI = mild Traumatic Brain Injury, i.e. concussion
- sTBI = severe Traumatic Brain Injury, i.e. diffuse axonal injury

23

0.50

0.25

0.75

1.00

BrIC

1.25

1.50

100

lnjury risk (%) S